•  
  •  
 

International Journal of Minerals, Metallurgy and Materials

Article Title

Mechanism of calcium lignosulfonate in apatite and dolomite flotation system

Corresponding Author

Bo Feng, E-mail: fengbo319@163.com

Keywords

apatite; dolomite; calcium lignosulfonate; depression mechanism

Abstract

Since the physical and chemical properties of apatite and dolomite can be similar, the separation of these two minerals is difficult. Therefore, when performing this separation using the flotation method, it is necessary to search for selective depressants. An experimental research was performed on the separation behavior of apatite and dolomite using calcium lignosulfonate as a depressant, and the mechanism by which this occurs was analyzed. The results show that calcium lignosulfonate has a depressant effect on both apatite and dolomite, but the depressant effect on dolomite is stronger at the same dosage. Mechanism analysis shows that the adsorptive capacity of calcium lignosulfonate on dolomite is higher than that of apatite, which is due to the strong reaction between calcium lignosulfonate and the Ca sites on dolomite. In addition, there is a hydrogen bond between calcium lignosulfonate and dolomite, which further prevents the adsorption of sodium oleate to dolomite, thus greatly inhibiting the flotation of dolomite.

References

[1] J. Huang, C.C. Xu, B.G. Ridoutt, X.C. Wang, and P.N. Ren, Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China, J. Clean. Prod., 159(2017), p. 171.

[2] Y.Y. Ruan, D.H. He, and C. Ruan, Review on beneficiation techniques and reagents used for phosphate ores, Minerals, 9(2019), No. 4, art. No. 253.

[3] L. Xiong, P. Wang, and P.M. Kopittke, Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils, Geoderma, 323(2018), p. 116.

[4] P.K. Pufahl and L.A. Groat, Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper, Econ. Geol., 112(2017), No. 3, p. 483.

[5] W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443.

[6] M. Mohammadkhani, M. Noaparast, S.Z. Shafaei, A. Amini, E. Amini, and H. Abdollahi, Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate, Int. J. Miner. Process., 100(2011), No. 3-4, p. 157.

[7] R.B. Chowdhury, G.A. Moore, A.J. Weatherley, and M. Arora, A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales, Resour. Conserv. Recycl., 83(2014), p. 213.

[8] D.H. Hoang, N. Kupka, U.A. Peuker, and M. Rudolph, Flotation study of fine grained carbonaceous sedimentary apatite ore—Challenges in process mineralogy and impact of hydrodynamics, Miner. Eng., 121(2018), p. 196.

[9] W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571.

[10] M. Derhy, Y. Taha, R. Hakkou, and M. Benzaazoua, Review of the main factors affecting the flotation of phosphate ores, Minerals, 10(2020), No. 12, art. No. 1109.

[11] Y.F. Chen, Q.M. Feng, G.F. Zhang, D.Z. Liu, and R.Z. Liu, Effect of sodium pyrophosphate on the reverse flotation of dolomite from apatite, Minerals, 8(2018), No. 7, art. No. 278.

[12] B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492.

[13] X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495.

[14] Y.Y. Ruan, Z.Q. Zhang, H.H. Luo, C.Q. Xiao, F. Zhou, and R. Chi, Effects of metal ions on the flotation of apatite, dolomite and quartz, Minerals, 8(2018), No. 4, art. No. 141.

[15] H. Zou, Q.B. Cao, D.W. Liu, X.C. Yu, and H. Lai, Surface features of fluorapatite and dolomite in the reverse flotation process using sulfuric acid as a depressor, Minerals, 9(2019), No. 1, art. No. 33.

[16] J. Yu, Y.Y. Ge, X.L. Guo, and W.B. Guo, The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore, Sep. Purif. Technol., 161(2016), p. 88.

[17] Z.C. Pan, Y.F. Wang, Q. Wei, X.T. Chen, F. Jiao, and W.Q. Qin, Effect of sodium pyrophosphate on the flotation separation of calcite from apatite, Sep. Purif. Technol., 242(2020), art. No. 116408.

[18] J. Yu, Y.Y. Ge, W.B. Guo, and X.L. Guo, Flotation collophane from high-iron phosphate ore by using sodium ligninsulfonate as depressant, Sep. Sci. Technol., 52(2017), No. 3, p. 557.

[19] X. Liu, Y.Y. Ruan, C.X. Li, and R.J. Cheng, Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system, Int. J. Miner. Process., 167(2017), p. 95.

[20] H.L. Zhu, H.B. Deng, and C. Chen, Flotation separation of andalusite from quartz using sodium petroleum sulfonate as collector, Trans. Nonferrous Met. Soc. China, 25(2015), No. 4, p. 1279.

[21] Y.X. Pang, X.Q. Qiu, D.J. Yang, and L.H. Liu, Research on complexation property of calcium lignosulfonate, Chem. Ind. For. Prod., 24(2004), No. 4, p. 28.

[22] Z.Y. Tan, Z.H. Yang, X. Ni, H.Y. Chen, and R.J. Wen, Effects of calcium lignosulfonate on the performance of zinc-nickel battery, Electrochim. Acta, 85(2012), p. 554.

[23] F.G. Calvo-Flores and J.A. Dobado, Lignin as renewable raw material, ChemSusChem, 3(2010), No. 11, p. 1227.

[24] G.Y. Li, X. Hou, Y.H. Mu, W. Ma, F. Wang, Y. Zhou, and Y.C. Mao, Engineering properties of loess stabilized by a type of eco-material, calcium lignosulfonate, Arab. J. Geosci., 12(2019), No. 22, p. 1.

[25] B. Feng, C.H. Zhong, L.Z. Zhang, Y.T. Guo, T. Wang, and Z.Q. Huang, Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng., 146(2020), art. No. 106142.

[26] W. Guo, B. Feng, J.X. Peng, W.P. Zhang, and X.W. Zhu, Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc, J. Mater. Res. Technol., 8(2019), No. 1, p. 697.

[27] W. Chen, Q.M. Feng, G.F. Zhang, D.Z. Liu, and L.F. Li, Selective flotation of scheelite from calcite using calcium lignosulphonate as depressant, Miner. Eng., 119(2018), p. 73.

[28] B. Feng, W. Guo, J.X. Peng, and W.P. Zhang, Separation of scheelite and calcite using calcium lignosulphonate as depressant, Sep. Purif. Technol., 199(2018), p. 346.

[29] C. Marion, A. Jordens, S. McCarthy, T. Grammatikopoulos, and K.E. Waters, An investigation into the flotation of muscovite with an amine collector and calcium lignin sulfonate depressant, Sep. Purif. Technol., 149(2015), p. 216.

[30] R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite, J. Cent. South Univ. Technol., 16(2009), No. 5, p. 753.

[31] X.D. Ma and M. Pawlik, The effect of lignosulfonates on the floatability of talc, Int. J. Miner. Process., 83(2007), No. 1-2, p. 19.

[32] B. Feng, X.P. Luo, J.Q. Wang, and P.C. Wang, The flotation separation of scheelite from calcite using acidified sodium silicate as depressant, Miner. Eng., 80(2015), p. 45.

[33] H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, Y. Hou, and J. Yao, New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660.

[34] J.Q. Yin, Z.Q. Zou, and J. Tian, Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1482.

[35] Y.S. Wang, Y. Zuo, X.H. Zhao, and S.S. Zha, The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution, Appl. Surf. Sci., 379(2016), p. 98.

[36] L. Klapiszewski, J. Zietek, F. Ciesielczyk, K. Siwinska-Stefanska, and T. Jesionowski, Magnesium silicate conjugated with calcium lignosulfonate: In situ synthesis and comprehensive physicochemical evaluations, Physicochem. Probl. Miner., 54(2018), No. 3, p. 793.

[37] D.Z. Ye, X.C. Jiang, C. Xia, L. Liu, and X. Zhang, Graft polymers of eucalyptus lignosulfonate calcium with acrylic acid: Synthesis and characterization, Carbohydr. Polym., 89(2012), No. 3, p. 876.

[38] K.F. Wei, W.B. Liu, X.Y. Peng, W.G. Liu, N.X. Zhang, and Z. Li, Investigating flotation behavior and mechanism of modified mineral oil in the separation of apatite ore, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 471.

[39] T. Wang, B. Feng, Y.T. Guo, W.P. Zhang, Y.B. Rao, C.H. Zhong, L.Z. Zhang, C. Cheng, H.H. Wang, and X.P. Luo, The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant, Miner. Eng., 159(2020), art. No. 106635.

[40] C.H. Zhong, B. Feng, W.P. Zhang, L.Z. Zhang, Y.T. Guo, T. Wang, and H.H. Wang, The role of sodium alginate in the flotation separation of apatite and dolomite, Powder Technol., 373(2020), p. 620.

[41] J. Yao, H.R. Sun, X.Q. Ban, and W.Z. Yin, Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations, Colloids Surf. A, 618(2021), art. No. 126448.

[42] D. Li, W.Z. Yin, J.W. Xue, J. Yao, Y.F. Fu, and Q. Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 736.

[43] M.J. Tian, R.Q. Liu, Z.Y. Gao, P. Chen, H.S. Han, L. Wang, C.Y. Zhang, W. Sun, and Y.H. Hu, Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector, Miner. Eng., 119(2018), p. 31.

Share

COinS