International Journal of Minerals, Metallurgy and Materials

Article Title

Review of electrodeposition methods for the preparation of high-entropy alloys

Corresponding Author

Zahra Shojaei, E-mail: zahra.shojaei.me@gmail.com


high-entropy alloy; electrodeposition; corrosion resistance; magnetic properties


High-entropy alloys (HEAs) are suitable for engineering applications requiring excellent mechanical, corrosion, thermal, and magnetic properties. In the last decade, electrodeposition has emerged as a promising synthesis technique for HEAs. Research has focused on the influence of procedure parameters on the deposition of different HEA layers and the effect of their microstructure on their corrosion and magnetic properties. This review of current literature provides comprehensive information on HEAs and the use of direct and pulse electrodeposition as a synthesis technique for these materials. This review also addresses the research gaps on HEA production via electrodeposition, such as using other ceramic particles instead of graphene oxide in composite structures based on HEAs.


[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

[2] Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389.

[3] W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2.

[4] W.R. Wang, W. Qi, X.L. Zhang, X. Yang, L. Xie, D.Y. Li, and Y.H. Xiang, Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 888.

[5] D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, and U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting, J. Alloys Compd., 784(2019), p. 195.

[6] B.Q. Jin, N.N. Zhang, S. Guan, Y. Zhang, and D.Y. Li, Microstructure and properties of laser re-melting FeCoCrNiAl0.5Six high-entropy alloy coatings, Surf. Coat. Technol., 349(2018), p. 867.

[7] A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt, R.S. Kottada, and A.S.M. Ang, Thermal spray high-entropy alloy coatings: A review, J. Therm. Spray Technol., 29(2020), No. 5, p. 857.

[8] H. Zhang, Y. Pan, Y.Z. He, and H.S. Jiao, Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding, Appl. Surf. Sci., 257(2011), No. 6, p. 2259.

[9] C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, and T.M. Wang, Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1312.

[10] T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549.

[11] B.R. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.L. Thomann, and D. Depla, High entropy alloy thin films deposited by magnetron sputtering of powder targets, Thin Solid Films, 580(2015), p. 71.

[12] M.D. Cropper, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition, Appl. Surf. Sci., 455(2018), p. 153.

[13] X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys., 210(2018), p. 12.

[14] N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332.

[15] M.H.K. Feizabad, E. Sarvestani, and G.R. Khayati, Modeling and optimization of chemical composition of nano/amorphous Fea.Nib.Nbc.Zrd alloy prepared via high-energy ball milling with enhanced soft magnetic properties; A mixture design approach, J. Alloys Compd., 841(2020), art. No. 155646.

[16] M.H.K. Feizabad, S. Sharafi, G.R. Khayati, and M. Ranjbar, Modeling of stress relaxation kinetics of amorphous Fe0.7Nb0.1Zr0.1Ti0.1 alloy powder: A novel approach based on differential thermal analysis, Powder Technol., 336(2018), p. 441.

[17] M.H.K. Feizabad, G.R. Khayati, S. Sharafi, and M. Ranjbar, Improvement of soft magnetic properties of Fe0.7Nb0.1Zr0.1Ti0.1 amorphous alloy: A kinetic study approach, J. Non-Cryst. Solids, 493(2018), p. 11.

[18] M.H.K. Feizabad, S. Sharafi, G.R. Khayati, and M. Ranjbar, Effect of process control agent on the structural and magnetic properties of nano/amorphous Fe0.7Nb0.1Zr0.1Ti0.1 powders prepared by high energy ball milling, J. Magn. Magn. Mater., 449(2018), p. 297.

[19] C.D. Gómez-Esparza, R. Peréz-Bustamante, J.M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J.M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 634.

[20] W.R. Wang, H.F. Xie, L. Xie, H.L. Li, X. Yang, and Y.N. Shen, Anti-penetration performance of high entropy alloy–ceramic gradient composites, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1320.

[21] B. Niu, F. Zhang, H. Ping, N. Li, J.Y. Zhou, L.W. Lei, J.J. Xie, J.Y. Zhang, W.M. Wang, and Z.Y. Fu, Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys, Sci. Rep., 7(2017), art. No. 3421.

[22] C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong, Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy, Electrochimica Acta, 53(2008), No. 28, p. 8359.

[23] H. Li, H. Sun, C. Wang, B. Wei, C. Yao, Y. Tong, and H. Ma, Controllable electrochemical synthesis and magnetic behaviors of Mg–Mn–Fe–Co–Ni–Gd alloy films, J. Alloys Compd., 598(2014), p. 161.

[24] V. Soare, M. Burada, I. Constantin, D. Mitrică, V. Bădiliţă, A. Caragea, and M. Târcolea, Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films, Appl. Surf. Sci., 358(2015), p. 533.

[25] A. Aliyu and C. Srivastava, Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide, Materialia, 8(2019), art. No. 100459.

[26] A. Aliyu and C. Srivastava, Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings, Materialia, 5(2019), art. No. 100249.

[27] A. Aliyu, M.Y. Rekha, and C. Srivastava, Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings, Philos. Mag., 99(2019), No. 6, p. 718.

[28] A. Aliyu and C. Srivastava, Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings, Thin Solid Films, 686(2019), art. No. 137434.

[29] F. Yoosefan, A. Ashrafi, S.M.M. vaghefi, and I. Constantin, Synthesis of CoCrFeMnNi high entropy alloy thin films by pulse electrodeposition: Part 1: Effect of pulse electrodeposition parameters, Met. Mater. Int., 26(2020), No. 8, p. 1262.

[30] F. Yoosefan, A. Ashrafi, and S.M.M. vaghefi, Characterization of Co–Cr–Fe–Mn–Ni high-entropy alloy thin films synthesized by pulse electrodeposition: Part 2: Effect of pulse electrodeposition parameters on the wettability and corrosion resistance, Met. Mater. Int., 27(2021), No. 1, p. 106.

[31] C.Z. Yao, B.H. Wei, P. Zhang, X.H. Lu, P. Liu, and Y.X. Tong, Facile preparation and magnetic study of amorphous Tm–Fe–Co–Ni–Mn multicomponent alloy nanofilm, J. Rare Earths, 29(2011), No. 2, p. 133.

[32] M.S. Zheng, Y. Li, J. Hu, Y. Zhao, and L.J. Yu, Preparation of high entropy alloy thin film fenicobimn by electroplating deposition method, Mater. Sci. Indian J., 11(2014), No. 10, p. 344.

[33] R.M. Florea and I. Carcea, Sustainable anti-corrosive protection technologies for metal products by electrodeposition of HEA layers, IOP Conf. Ser.: Mater. Sci. Eng., 591(2019), No. 1, art. No. 012014.

[34] D.M. Kemény, N.M. Pálfi, and É. Fazakas, Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy, Mater. Today Proc., 45(2021), p. 4250.

[35] J. Mendoza-Canale and J. Marín-Cruz, Corrosion behavior of titanium and nickel-based alloys in HCl and HCl+ H2S environments, Int. J. Electrochem. Sci., 3(2008), p. 346.

[36] H.B. Muralidhara and Y.A. Naik, Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath, Surf. Coat. Technol., 202(2008), No. 14, p. 3403.

[37] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1.

[38] M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-entropy Alloys: Fundamentals and Applications, Springer International Publishing Switzerland, 2016.

[39] D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.

[40] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat., 31(2006), No. 6, p. 633.

[41] A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans., JIM, 41(2000), No. 11, p. 1372.

[42] Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis, Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys, Mater. Des., 170(2019), art. No. 107698.

[43] K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887.

[44] R.B. Nair, H.S. Arora, and H.S. Grewal, Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1353.

[45] J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35(2004), No. 8, p. 2533.

[46] C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou, and P.K. Liaw, Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy, Adv. Mater., 32(2020), No. 49, art. No. 2004029.

[47] M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2(2014), No. 3, p. 107.

[48] J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, and H.F. Zhang, Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength, Mater. Lett, 290(2021), art. No. 129428.

[49] B.M. Mundotiya and W. Ullah, Morphology controlled synthesis of the nanostructured gold by electrodeposition techniques. [in] M. Sone and K. Masu, eds., Novel Metal Electrodeposition and the Recent Application, London: IntechOpen, 2018.

[50] F.W. Bach, A. Laarmann, and T. Wenz, Modern Surface Technology, Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

[51] A. Brenner, Electrodeposition of Alloys—Principles and Practice, Elsevier Inc., 1963.

[52] N.P. Wasekar, N. Hebalkar, A. Jyothirmayi, B. Lavakumar, M. Ramakrishna, and G. Sundararajan, Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni–W alloy coatings with high tungsten content, Corros. Sci., 165(2020), art. No. 108409.

[53] T. Borkar, Electrodeposition of Nickel Composite Coatings [Dissertation], Oklahoma State University, 2010.

[54] M.S. Chandrasekar and M. Pushpavanam, Pulse and pulse reverse plating—Conceptual, advantages and applications, Electrochimica Acta, 53(2008), No. 8, p. 3313.

[55] Endres, Frank, Andrew Abbott, and Douglas R. MacFarlane, eds. Electrodeposition from ionic liquids. John Wiley & Sons, (2017).

[56] Y. Brif, M. Thomas, and I. Todd, The use of high-entropy alloys in additive manufacturing, Scr. Mater., 99(2015), p. 93.

[57] S. Varalakshmi, G.A. Rao, M. Kamaraj, and B.S. Murty, Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying, J. Mater. Sci., 45(2010), No. 19, p. 5158.

[58] M.D. Alcalá, C. Real, I. Fombella, I. Trigo, and J.M. Córdoba, Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy, J. Alloys Compd., 749(2018), p. 834.

[59] H. Cheng, X.Q. Liu, Q.H. Tang, W.G. Wang, X.H. Yan, and P.Q. Dai, Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering, J. Alloys Compd., 775(2019), p. 742.

[60] A.I. Yurkova, V.V. Cherniavsky, V. Bolbut, M. Krüger, and I. Bogomol, Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering, J. Alloys Compd., 786(2019), p. 139.

[61] A. Poulia, E. Georgatis, C. Mathiou, and A.E. Karantzalis, Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element, Mater. Chem. Phys., 210(2018), p. 251.

[62] J. Málek, J. Zýka, F. Lukáč, M. Vilémová, T. Vlasák, J. Čížek, O. Melikhova, A. Macháčková, and H.S. Kim, The effect of processing route on properties of HfNbTaTiZr high entropy alloy, Materials (Basel), 12(2019), No. 23, art. No. 4022.

[63] G.H. Meng, N.A. Protasova, E.P. Kruglov, X. Lin, H. Xie, and X. Ding, Solidification behavior and morphological evolution in laser surface forming of AlCoCrCuFeNi multi-layer high-entropy alloy coatings on AZ91D, J. Alloys Compd., 772(2019), p. 994.

[64] M.A. Haq, N.S.A. Eom, N. Su, H. Lee, T.S. Kim, and B.S. Kim, Powder interface modification for synthesis of core-shell structured CoCrFeNiTi high entropy alloy composite, Appl. Surf. Sci., 506(2020), art. No. 144925.

[65] Y.Y. Du, Y.P. Lu, T.M. Wang, T.J. Li, and G.L. Zhang, Effect of electromagnetic stirring on microstructure and properties of Al0.5CoCrCuFeNi alloy, Procedia Eng., 27(2012), p. 1129.

[66] L. Xie, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, and G.Y. Shang, Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth, Intermetallics, 68(2016), p. 78.

[67] G. Jin, Z.B. Cai, Y.J. Guan, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and D. zhang, High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating, Appl. Surf. Sci., 445(2018), p. 113.

[68] A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B.S. Murty, R.S. Kottada, C.C. Berndt, and A.S.M. Ang, Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings, J. Alloys Compd., 854(2021), art. No. 157140.

[69] P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, and G. Li, Microstructure and mechanical behaviors of CoFeNiMnTixAl1–x high entropy alloys, Mater. Sci. Eng. A, 731(2018), p. 124.

[70] J. Málek, J. Zýka, F. Lukáč, J. Čížek, L. Kunčická, and R. Kocich, Microstructure and mechanical properties of sintered and heat-treated HfNbTaTiZr high entropy alloy, Metals, 9(2019), No. 12, art. No. 1324.

[71] X.Q. Liu, H. Cheng, Z.J. Li, H. Wang, F. Chang, W.G. Wang, Q.H. Tang, and P.Q. Dai, Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Vacuum, 165(2019), p. 297.

[72] A.J. Zhang, J.S. Han, B. Su, and J.H. Meng, A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy, Mater. Sci. Eng. A, 731(2018), p. 36.

[73] P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 655(2016), p. 283.

[74] F. Xiong, R.D. Fu, Y.J. Li, and D.L. Sang, Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys, J. Alloys Compd., 822(2020), art. No. 153512.

[75] G. Liu, L. Liu, X.W. Liu, Z.J. Wang, Z.H. Han, G.J. Zhang, and A. Kostka, Microstructure and mechanical properties of Al0.7CoCrFeNi high-entropy-alloy prepared by directional solidification, Intermetallics, 93(2018), p. 93.

[76] J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.H. Yu, S.S. Yang, and H.S. Kim, Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy, Mater. Sci. Eng. A, 773(2020), art. No. 138726.

[77] Y. Dong, D.X. Qiao, H.Z. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructure evolution and hardness of AlCrFeNixMo0.2 high entropy alloy, Mater. Sci. Forum, 849(2016), p. 40.

[78] Y.S. Kim, H.J. Park, S.C. Mun, E. Jumaev, S.H. Hong, G. Song, J.T. Kim, Y.K. Park, K.S. Kim, S.I. Jeong, Y.H. Kwon, and K.B. Kim, Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering, J. Alloys Compd., 797(2019), p. 834.

[79] Q. Chao, T.T. Guo, T. Jarvis, X.H. Wu, P. Hodgson, and D. Fabijanic, Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel, Surf. Coat. Technol., 332(2017), p. 440.

[80] T.M. Yue, H. Xie, X. Lin, H.O. Yang, and G.H. Meng, Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying, Entropy, 15(2013), No. 12, p. 2833.

[81] Y. Tian, C.Y. Lu, Y.F. Shen, and X.M. Feng, Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method, Surf. Interfaces, 15(2019), p. 135.

[82] Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Wen, W. Xiong, et al., A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength, Sci. Adv., 4(2018), art. No. eaat8712.

[83] I.L. Velo, F.J. Gotor, M.D. Alcalá, C. Real, and J.M. Córdoba, Fabrication and characterization of WC–HEA cemented carbide based on the CoCrFeNiMn high entropy alloy, J. Alloys Compd., 746(2018), p. 1.

[84] N. Larianovsky, A. Katz-Demyanetz, E. Eshed, and M. Regev, Microstructure, tensile and creep properties of Ta20Nb20Hf20Zr20Ti20 high entropy alloy, Materials (Basel), 10(2017), No. 8, art. No. 883.

[85] L. Guo, D.H. Xiao, W.Q. Wu, S. Ni, and M. Song, Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100–xFex high entropy alloys processed by spark plasma sintering, Intermetallics, 103(2018), p. 1.

[86] C. Yang, K. Aoyagi, H.K. Bian, and A. Chiba, Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr, Mater. Lett., 254(2019), p. 46.

[87] T.E. Whitfield, H.J. Stone, C.N. Jones, and N.G. Jones, Microstructural degradation of the AlMo0.5NbTa0.5TiZr refractory metal high-entropy superalloy at elevated temperatures, Entropy (Basel), 23(2021), No. 1, art. No. 80.

[88] H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, and H.Z. Fu, Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification, J. Mater. Sci. Technol., 38(2020), p. 19.

[89] A.O. Moghaddam, J. Pasandideh, A. Abdollahzadeh, N.A. Shaburova, and E. Trofimov, On the application of NbTaTiVW refractory high entropy alloy particles in the manufacturing process of WC based matrix body drill bits, Int. J. Refract. Met. Hard Mater., 99(2021), art. No. 105608.

[90] J.H. Pi, Y. Pan, L. Zhang, and H. Zhang, Microstructure and property of AlTiCrFeNiCu high-entropy alloy, J. Alloys Compd., 509(2011), No. 18, p. 5641.

[91] W.B. Liao, S. Lan, L.B. Gao, H.T. Zhang, S. Xu, J. Song, X.L. Wang, and Y. Lu, Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin Solid Films, 638(2017), p. 383.

[92] M. Dada, P. Popoola, and N. Mathe, Recent advances of high entropy alloys for aerospace applications: A review, World J. Eng., 2021, https://doi.org/10.1108/WJE-01-2021-00400

[93] J.K. Xiao, H. Tan, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying, Surf. Coat. Technol., 385(2020), art. No. 125430.

[94] I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I. Dlouhy, Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy, Mater. Lett., 174(2016), p. 53.

[95] L. Yang, C.C. Zhao, W.W. Zhu, Z. Cheng, P.B. Wei, and F.Z. Ren, Microstructure, mechanical properties, and sliding wear behavior of oxide-dispersion-strengthened FeMnNi alloy fabricated by spark plasma sintering, Metall. Mater. Trans. A, 51(2020), No. 6, p. 2796.

[96] W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang, Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys, J. Alloys Compd., 735(2018), p. 897.

[97] O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68(2014), p. 214.

[98] T.T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang, Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy, Intermetallics, 67(2015), p. 171.

[99] G.N. Zhang, X. Yang, Z.C. Yang, Y. Li, G. He, and J.T. Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 244.

[100] Y. Zhang, Y. Liu, Y.X. Li, X. Chen, and H.W. Zhang, Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy, Mater. Sci. Forum, 849(2016), p. 76.

[101] L. Liu, J.B. Zhu, C. Hou, J.C. Li, and Q. Jiang, Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering, Mater. Des., 46(2013), p. 675.

[102] J.K. Xiao, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings, Wear, 448-449(2020), art. No. 203209.

[103] K.C. Cheng, J.H. Chen, S. Stadler, and S.H. Chen, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process, Appl. Surf. Sci., 478(2019), p. 478.

[104] S. Thangaraju, E. Bouzy, and A. Hazotte, Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy , Adv. Eng. Mater., 19(2017), No. 8, art. No. 1700095.

[105] V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol., 29(2018), No. 9, p. 2221.

[106] Ł. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy, J. Alloys Compd., 708(2017), p. 344.

[107] O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar, Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys, Intermetallics, 77(2016), p. 46.

[108] S. Li, S. Lei, Y.B. Wu, S.S. Hu, Y.F. Liu, and H.L. Xu, Effect of Ti content on magnetic and electrochemical corrosion properties of FeCoCrNi high entropy alloys, ECS J. Solid State Sci. Technol., 10(2021), No. 3, art. No. 033003.

[109] M. Izadi, M. Soltanieh, S. Alamolhoda, S.M.S. Aghamiri, and M. Mehdizade, Microstructural characterization and corrosion behavior of AlxCoCrFeNi high entropy alloys, Mater. Chem. Phys., 273(2021), art. No. 124937.

[110] A.C. Yeh, Y.J. Chang, C.W. Tsai, Y.C. Wang, J.W. Yeh, and C.M. Kuo, On the solidification and phase stability of a Co–Cr–Fe–Ni–Ti high-entropy alloy, Metall. Mater. Trans. A, 45(2014), No. 1, p. 184.

[111] M. Zhu, C. Zhang, K. Li, Y.Q. Liu, M. Zhang, L.J. Yao, and Z.Y. Jian, A novel CoFe2NiMn0.3AlCux high-entropy alloy with excellent magnetic properties and good mechanical properties, Acta Metall. Sinica Engl. Lett., 34(2021), No. 11, p. 1557.

[112] L.Z. Medina, L. Riekehr, and U. Jansson, Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy, Surf. Coat. Technol., 403(2020), art. No. 126323.

[113] S.Y. Duan, X.H. Zhan, M.Y. Wu, H.C. Bu, and Q.Y. Gao, Analysis of elements non-uniform distribution of FeCoCrNi high-entropy alloy coatings on Ti–6Al–4V surface by laser cladding, Met. Mater. Int., 27(2021), No. 3, p. 467.

[114] H. Li, J.L. Li, C.Q. Yan, X.F. Zhang, and D.S. Xiong, Microstructure and tribological properties of plasma-sprayed Al0.2Co1.5CrFeNi1.5.Ti–Ag composite coating from 25 to 750°C, J. Mater. Eng. Perform., 29(2020), No. 3, p. 1640.

[115] W.L. Hsu, H. Murakami, H. Araki, M. Watanabe, S. Kuroda, A.C. Yeh, and J.W. Yeh, A study of NiCo0.6Fe0.2CrxSiAlTiy High-entropy alloys for applications as a high-temperature protective coating and a bond coat in thermal barrier coating systems, J. Electrochem. Soc., 165(2018), No. 9, p. C524.

[116] C. Ni, Y. Shi, J. Liu, and G.Z. Huang, Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding, Opt. Laser Technol., 105(2018), p. 257.

[117] R.B. Mane, R. Y, and B.B. Panigrahi, Sintering mechanism of CoCrFeMnNi high-entropy alloy powders, Powder Metall., 61(2018), No. 2, p. 131.

[118] Y.S. Geng, H. Tan, L. Wang, A.K. Tieu, J. Chen, J. Cheng, and J. Yang, Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy, Tribol. Int., 154(2021), art. No. 106662.

[119] N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev, Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys, J. Alloys Compd., 652(2015), p. 266.

[120] T.T. Shun and Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Compd., 479(2009), No. 1-2, p. 157.

[121] H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, and H.Z. Fu, Phase separation of AlCoCrFeNi2.1 eutectic high-entropy alloy during directional solidification and their effect on tensile properties, Intermetallics, 113(2019), art. No. 106569.

[122] J.J. Yi, S. Tang, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, A novel Al0.5CrCuNiV 3d transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties, J. Alloys Compd., 846(2020), art. No. 156466.

[123] L.Q. Chen, W. Li, P. Liu, K. Zhang, F.C. Ma, X.H. Chen, H.L. Zhou, and X.K. Liu, Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering, Vacuum, 181(2020), art. No. 109706.

[124] S. Yin, W.Y. Li, B. Song, X.C. Yan, M. Kuang, Y.X. Xu, K. Wen, and R. Lupoi, Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1003.

[125] L.M. Wang, C.C. Chen, J.W. Yeh, and S.T. Ke, The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys, Mater. Chem. Phys., 126(2011), No. 3, p. 880.

[126] X.W. Qiu, Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification, J. Alloys Compd., 735(2018), p. 359.

[127] C.W. Wang, H.M. Wang, G.R. Li, M. Liu, D. Zhang, H.R. Wen, W.X. Ren, L.P. Gao, and J.J. Chen, Microwave vacuum sintering of FeCoNi1.5CuB0.5Y0.2 high-entropy alloy: Effect of heat treatment on microstructure and mechanical property, Vacuum, 181(2020), art. No. 109738.

[128] G.R. Zhang and Y.Q. Wu, High-entropy transparent ceramics: Review of potential candidates and recently studied cases, Int. J. Appl. Ceram. Technol., 19(2022), No. 2, p. 644.

[129] N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys, Mater. Sci. Eng. A, 704(2017), p. 82.

[130] H.B. Cui, H.Y. Wang, J.Y. Wang, and H.Z. Fu, Microstructure and microsegregation in directionally solidified FeCoNiCrAl high entropy alloy, Adv. Mater. Res., 189-193(2011), p. 3840.

[131] Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, and T.J. Li, A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 3, p. 369.

[132] J.J. Wang, S.F. Kuang, X. Yu, L.Q. Wang, and W.J. Huang, Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering, Surf. Coat. Technol., 403(2020), art. No. 126374.

[133] X.W. Qiu, Structure and electrochemical properties of laser cladding Al2CoCrCuFeNiTix high-entropy alloy coatings, Met. Mater. Int., 26(2020), No. 7, p. 998.

[134] T.C. Li, Y. Liu, B. Liu, W.M. Guo, and L.Y. Xu, Microstructure and wear behavior of FeCoCrNiMo0.2 high entropy coatings prepared by air plasma spray and the high velocity oxy-fuel spray processes, Coatings, 7(2017), No. 9, art. No. 151.

[135] Q.D. Qin, J.B. Qu, Y.E. Hu, Y.J. Wu, and X.D. Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi–TiO high-entropy alloy, Int. J. Miner. Metall.