International Journal of Minerals, Metallurgy and Materials

Article Title

Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

Corresponding Author

Theerachai Bongkarn, E-mail: researchcmu@yahoo.com


BNKLT–; dielectric; ferroelectric; strain; magnetic


Bi0.5(Na0.68K0.22Li0.10)0.5Ti1–xCoxO3 lead-free perovskite ceramics (BNKLT–xCo, x = 0, 0.005, 0.010, 0.015 and 0.020) were fabricated via the solid-state combustion technique. A small-amount of Co2+ ion substitution into Ti-sites led to modification of the phase formation, microstructure, electrical and magnetic properties of BNKLT ceramics. Coexisting rhombohedral and tetragonal phases were observed in all samples using the X-ray diffraction (XRD) technique. The Rietveld refinement revealed that the rhombohedral phase increased from 39% to 88% when x increased from 0 to 0.020. The average grain size increased when x increased. With increasing x, more oxygen vacancies were generated, leading to asymmetry in the bipolar strain (SE) hysteresis loops. For the composition of x = 0.010, a high dielectric constant (εm) of 5384 and a large strain (Smax) of 0.23% with the normalized strain \begin{document}$ \left({d}_{33}^{*}\right) $\end{document} of 460 pm·V–1 were achieved. The BNKLT–0Co ceramic showed diamagnetic behavior but all of the BNKLT–xCo ceramics exhibited paramagnetic behavior, measured at 50 K.


[1] L.X. He, M. Gao, C.E. Li, W.M. Zhu, and H.X. Yan, Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−xyO3 ceramics, J. Eur. Ceram. Soc., 21(2001), No. 6, p. 703.

[2] J.J. Choi, J.H. Lee, B.D. Hahn, W.H. Yoon, and D.S. Park, Co-firing of PZN–PZT/Ag multilayer actuator prepared by tape-casting method, Mater. Res. Bull., 43(2008), No. 2, p. 483.

[3] T. Yamamoto, Ferroelectric properties of the PbZrO3–PbTiO3 system, Jpn. J. Appl. Phys., 35(1996), No. 9S, p. 5104.

[4] J.M. Li, F.F. Wang, C.M. Leung, S.W. Or, Y.X. Tang, X.M. Chen, T. Wang, X.M. Qin, and W.Z. Shi, Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics, J. Mater. Sci., 46(2011), No. 17, p. 5702.

[5] A. Maqbool, A. Hussain, R.A. Malik, A. Zaman, T.K. Song, W.J. Kim, and M.H. Kim, Dielectric and ferroelectric properties of Nb doped BNT-based relaxor ferroelectrics, Korean. J. Mater. Res., 25(2015), No. 7, p. 317.

[6] G.J. Lee, B.H. Kim, S.A. Yang, J.J. Park, S.D. Bu, and M.K. Lee, Piezoelectric and ferroelectric properties of (Bi,Na)TiO3–(Bi,Li)TiO3–(Bi,K)TiO3 ceramics for accelerometer application, J. Am. Ceram. Soc., 100(2016), No. 2, p. 678.

[7] J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, and Y.J. Park, Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 ceramics, Ceram. Int., 40(2014), No. 6, p. 8419.

[8] Y.J. Dai, X.W. Zhang, and K.P. Chen, An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free ceramics, Int. J. Appl. Ceram. Technol., 8(2011), No. 2, p. 423.

[9] J. Shieh, K.C. Wu, and C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater., 55(2007), No. 9, p. 3081.

[10] R. Sumang, D.P. Cann, N. Kumar, and T. Bongkarn, The influence of firing temperatures on the crystal structure, microstructure and dielectric properties of 0.68Bi0.5Na0.5TiO3–0.22Bi0.5K0.5TiO3–0.10Bi0.5Li0.5TiO3Ceramics prepared via the combustion technique, Ferroelectrics, 490(2016), No. 1, p. 51.

[11] A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys., 38(1999), No. Part1, p. 5564.

[12] D. Maurya, Y. Zhou, Y.K. Yan, and S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response, J. Mater. Chem. C, 1(2013), No. 11, art. No. 2102.

[13] K.T.P. Seifert, W. Jo, and J. Rödel, Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2k1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1392.

[14] P. Bhupaijit, P. Kidkhunthod, S.K. Gupta, N. Nuntawong, S. Prasertpalichat, S. Pinitsoontorn, M. Horprathum, and T. Bongkarn, Phase evolution, microstructure, electrical, and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics with Fe3+ substitution, Phys. Status Solidi A, 217(2020), No. 12, art. No. 1900983.

[15] K. Thangavelu, R. Ramadurai, and S. Asthana, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution, AIP Adv., 4(2014), No. 1, art. No. 017111.

[16] S. Buntham, P. Boonsong, P. Jaiban, N. Keawprak, and A. Watcharapasorn, Effects of cobalt dopant on microstructure and electrical properties of Bi0.5Na0.5TiO3 ceramics, Chiang Mai J. Sci., 45(2018), No. 6, p. 2481.

[17] B. Parija, T. Badapanda, P. Sahoo, M. Kar, P. Kumar, and S. Panigrahi, Structural and electromechanical study of Bi0.5Na0.5TiO3–BaTiO3 solid-solutions, Process. Appl. Ceram., 7(2013), No. 2, p. 73.

[18] R.Z. Zuo, Z.K. Xu, and L.T. Li, Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics, J. Phys. Chem. Solids, 69(2008), No. 7, p. 1728.

[19] P. Kumar, M. Pattanaik, and Sonia, Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB, Ceram. Int., 39(2013), No. 1, p. 65.

[20] A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, and S. Sen, Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5–xKxBi0.5–xLax)TiO3, Ceram. Int., 44(2018), No. 16, p. 20178.

[21] X.M. Chen, H.Y. Ma, W.Y. Pan, M. Pang, P. Liu, and J.P. Zhou, Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: Effect of Na nonstoichiometry, Mater. Chem. Phys., 132(2012), No. 2-3, p. 368.

[22] A.E.R. Mahmoud, M. Ezzeldien, and S.K.S. Parashar, Enhancement of switching/un-switching leakage current and ferroelectric properties appraised by PUND method of (Ba1–xCax)TiO3 lead free piezoelectric near MPB, Solid State Sci., 93(2019), p. 44.

[23] P.Y. Chen, C.S. Chen, C.S. Tu, P.H. Chen, and J. Anthoniappen, Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J. Eur. Ceram. Soc., 36(2016), No. 7, p. 1613.

[24] U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, and A. Feteira, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT–BT–BKT piezoceramics, Mater. Res. Bull., 97(2018), p. 385.

[25] Q.H. Zhang, X.Y. Zhao, R.B. Sun, and H.S. Luo, Crystal growth and electric properties of lead-free NBT–BT at compositions near the morphotropic phase boundary, Phys. Status Solidi A, 208(2011), No. 5, p. 1012.

[26] I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, and J.S. Lee, Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution, J. Intell. Mater. Syst. Struct., 24(2013), No. 11, p. 1343.

[27] K.N. Pham, A. Hussain, C.W. Ahn, W.K. Ill, S.J. Jeong, and J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett., 64(2010), No. 20, p. 2219.

[28] D.K. Kushvaha, S.K. Rout, and B. Tiwari, Structural, piezoelectric and high density energy storage properties of lead-free BNKT–BCZT solid solution, J. Alloys Compd., 782(2019), p. 270.