International Journal of Minerals, Metallurgy and Materials

Article Title

Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

Corresponding Author

K. A. Samah*

Advance Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

Corresponding Author 2

M. R. Sahar*

Advance Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia


ceramics; cullet glass; paper ash; wollastonite; structural properties; dielectric properties


Novel ceramics from waste material made of ( x) paper ash-(80- x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.>


M.C. Bignozzi, A. Saccani, and F. Sandrolini, New polymer mortars containing polymeric wastes. Part 1. Microstructure and mechanical properties, Composites Part A, 31(2000), No. 2, p. 97.

Y.N. El-Shimy, S.K. Amin, S.A. EL-Sherbiny, and M.F. Abadir, The use of cullet in the manufacture of vitrified clay pipes, Constr. Build. Mater., 73(2014), p. 452.

M. Sutcu, S. Akkurt, A. Bayram, and U. Uluca, Production of anorthite refractory insulating firebrick from mixtures of clay and recycled paper waste with sawdust addition, Ceram. Int., 38(2012), No. 38, p. 1033.

M.J. Pan and C.A. Randall, A brief introduction to ceramic capacitors, IEEE Electr. Insul. Mag., 26(2010), No. 3, p. 44.

V.A. Mymrin, K.P. Alekseev, A. Nagalli, R.E. Catai, and C. A. Romano, Hazardous phosphor-gypsum chemical waste as a principal component in environmentally friendly construction materials, J. Environ. Chem. Eng., 3(2015), No. 4, p. 2611.

T. Toya, Y. Kameshima, A. Yasumori, and K. Okada, Preparation and properties of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining, J. Eur. Ceram. Soc., 24(2004), No. 8, p. 2367.

T. Toya, Y. Kameshima, A. Nakajima, and K. Okada, Preparation and properties of glass-ceramics from kaolin clay refining waste (Kira) and paper sludge ash, Ceram. Int., 32(2006), No. 7, p. 789.

M.F. Al-Hilli and K.T. Al-Rasoul, Influence of glass addition and sintering temperature on the structure, mechanical properties and dielectric strength of high-voltage insulators, Mater. Des., 31(2010), No. 8, p. 3885.

M.F. Al-Hilli and K.T. Al-Rasoul, Characterization of alumino-silicate glass/kaolinite composite, Ceram. Int., 39(2013), No. 5, p. 5855.

K. Singh, T. Quazi, S. Upadhyay, and P. Sakharkar, Development of low permittivity material using fly ash, Indian J. Eng. Mater. Sci., 12(2005), No. 4, p. 345.

V. Ferrándiz-Mas, T. Bond, E. García-Alcocel, and C.R. Cheeseman, Lightweight mortars containing expanded polystyrene and paper sludge ash, Constr. Build. Mater., 61(2014), p. 285.

E. Karamanova, G. Avdeev, and A. Karamanov, Ceramics from blast furnace slag, kaolin and quartz, J. Eur. Ceram. Soc., 31(2011), No. 6, p. 989.

J.S. Lu, X.Q. Cong, and Z.Y. Lu, Influence of magnesia on sinter-crystallization, phase composition and flexural strength of sintered glass-ceramics from waste materials, Mater. Chem. Phys., 174(2016), p. 143.

C.S. Fan and K.C. Li, Production of insulating glass ceramics from thin film transistor-liquid crystal display (TFT-LCD) waste glass and calcium fluoride sludge, J. Cleaner Prod., 57(2013), p. 335.

R.D. Rawlings, J.P. Wu, and A.R. Boccaccini, Glass-ceramics:Their production from wastes-A review, J. Mater. Sci., 41(2006), No. 3, p. 733.

M. Felipe-Sesé, D. Eliche-Quesada, and F.A. Corpas-Iglesias, The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials, Ceram. Int., 37(2011), No. 8, p. 3019.

L. Barbieri, F. Andreola, D. Bellucci, V. Cannillo, I. Lancellotti, A. Lugari, J.M. Rincon, M. Romero, and A. Sola, Preliminary studies on the valorization of animal flour ash for the obtainment of active glasses, Ceram. Int., 40(2014), No. 4, p. 5619.

S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, and P. Chindaprasirt, Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste, Cem. Concr. Compos., 45(2014), p. 9.

M.P. Kumar, T. Sankarappa, and S. Kumar, AC conductivity studies in rare earth ions doped vanadotellurite glasses, J. Alloys Compd., 464(2008), No. 1-2, p. 393.

M. Sutcu, and S. Akkurt, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceram. Int., 357(2009), No.7, p. 2625.

J.A. Cusidó, L.V. Cremades, C. Soriano, and M. Devant, Incorporation of paper sludge in clay brick formulation:Ten years of industrial experience, Appl. Clay Sci., 108(2015), p. 191.

E. Furlani, G. Tonello, S. Maschio, E. Aneggi, D. Minichelli, S. Bruckner, and E. Lucchini, Sintering and characterization of ceramics containing paper sludge, glass cullet and different types of clayey materials, Ceram. Int., 37(2011), No. 4, p. 1293.

K. Okada, T. Toya, Y. Kameshima, and A. Nakajima, Properties of glass-ceramics prepared from Kira (waste by-products of silica sand and kaolin clay refining) and various additives, WIT Trans. Ecol. Environ., 79(2004), p. 11.

D.L. Guerra, S.P. Oliveira, R.A.S. Silva, E.M. Silva, and A.C. Batista, Dielectric properties of organofunctionalized kaolinite clay and application in adsorption mercury cation, Ceram. Int., 38(2012), No. 2, p. 1687.

A. Mitrović and M. Zduji, Preparation of pozzolanic addition by mechanical treatment of kaolin clay, Int. J. Miner. Process., 132(2014), p. 59.

T. Tarvornpanich, G.P. Souza, and W.E. Lee, Microstructural evolution on firing soda-lime-silica glass fluxed whitewares, J. Am. Ceram. Soc., 88(2005), No. 5, p. 1302.

J.S. Lu, Z.Y. Lu, C.H. Peng, X.B. Li, and H.L. Jiang, Influence of particle size on sinterability, crystallisation kinetics and flexural strength of wollastonite glass-ceramics from waste glass and fly ash, Mater. Chem. Phys., 148(2014), No. 1-2, p. 449.

N. Pisitpipathsin, P. Kantha, K. Pengpat, and G. Rujijanagul, Influence of Ca substitution on microstructure and electrical properties of Ba(Zr, Ti)O3 ceramics, Ceram. Int., 39(2013), p. 35.

N.H. Bateni, M.N. Hamidon, K.A. Matori, S. Pojprapai, and P. Kantha, Electrical evaluation of ceramic obtained from white rice husk ash and soda lime silica glass for electronic applications, J. Mater. Sci. Mater. Electron., 25(2014), No. 12, p. 5491.

R. Shahsavari, L. Chen, and L. Tao, Edge dislocations in dicalcium silicates:experimental observations and atomistic analysis, Cem. Concr. Res., 90(2016), p. 80.

S.S. Batool, Z. Imran, M.A. Rafiq, M.M. Hasan, and M. Willander, Investigation of dielectric relaxation behavior of electrospun titanium dioxide nanofibers using temperature dependent impedance spectroscopy, Ceram. Int., 39(2013), No. 2, p. 1775.

S.X. Zeng and J.L. Wang, Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes, Constr. Build. Mater., 121(2016), p. 386.

X.M. Cui, G.J. Zheng, Y.C. Han, F. Su, and J. Zhou, A study on the electrical conductivity of chemosynthetic Al2O3-2SiO2 geopolymer materials, J. Power Sources, 184(2008), No. 2, p. 652.

R. Muccillo, E.N.S. Muccillo, Y.V Franca, C. Fredericci, M.O. Prado, and E.D. Zanotto, Impedance spectroscopy of a soda-lime glass during sintering, Mater. Sci. Eng. A, 352(2003), No. 1-2, p. 232.

L. Pavić, N.N. Rao, A. Moguš-Milanković, A. Šantić, V.R. Kumar, M. Piasecki, I.V. Kityk, and N. Veeraiah, Physical properties of ZnF2-PbO-TeO2:TiO2 glass ceramics-Part Ⅲ dielectric dispersion and ac conduction phenomena, Ceram. Int., 40(2014), No. 4, p. 5989.

S. Hraiech and M. Férid, Synthesis, electrical and dielectric properties of (Na2O)0.5-(P2O5)0.5 glass, J. Alloys Compd., 577(2013), p. 543.

Z.W. Peng, X.L. Lin, Z.Z. Li, J.Y. Hwang, B.G. Kim, Y.B. Zhang, G.H. Li, and T. Jiang, Dielectric characterization of Indonesian low-rank coal for microwave processing, Fuel Process. Technol., 156(2017), p. 171.

W.S. Kang, S.K. Lee, and J.H. Koh, AC conductivity and dielectric properties of (Bi,Na)TiO3-BaTiO3 lead-free ceramics, Ceram. Int., 41(2015), No. 5, p. 6925.

R. Sharma, P. Pahuja, and R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3-CoFe1.8Zn0.2O4 multiferroic particulate composites, Ceram. Int., 40(2014), No. 7, p. 9027.

P.N. Kumta and J.Y. Kim, Low dielectric constant glasses and glass-ceramics for electronic packaging applications,[in] H.S. Nalwa Ed. Handbook of Low and High Dielectric Constant Materials and Their Application, Academic Press, Pennsylvania, 1999, p. 73.

S. Jesurani, S. Kanagesan, R. Velmurugan, and T. Kalaivani, Phase formation and high dielectric constant of calcium copper titanate using the sol-gel route, J. Mater. Sci. Mater. Electron., 23(2012), No. 3, p. 668.

L. Zhang, Z. Liu, X. Lu, G. Yang, X.Y. Zhang, and Z.Y. Cheng, Nano-clip based composites with a low percolation threshold and high dielectric constant, Nano Energy, 26(2016), p. 550.

S.K. Deraman, N.S. Mohamed, and R.H.Y. Subban, Conductivity and dielectric properties of proton conducting poly (vinyl) chloride (PVC) based gel polymer electrolytes, Sains Malaysiana, 42(2013), No. 4, p. 475.

N. Chand, J. Sharma, and M.N. Bapat, A new proposed model for dielectric behavior of PVC/rice husk composites, J. Appl. Polym. Sci., 126(2012), No. 3, p. 1105.

S.C. Raghavendra, R.L. Raibagkar, and A.B. Kulkarni, Dielectric properties of fly ash, Bull. Mater. Sci., 25(2002), No. 1, p. 37.

F.E. Salman and A. Mekki, Dielectric study, and ac conductivity of iron sodium silicate glasses, J. Non-Cryst. Solids, 357(2011), No. 14, p. 2658.

H.K. Zhu, W. Shen, Y. Jin, and H.Q. Zhou, Study on properties of Ca2Zn4Ti15O36 ceramics with CaO-B2O3-SiO2 glass, J. Mater. Sci. Mater. Electron., 24(2013), No. 4, p. 1090.

H. Zhu, M. Liu, H. Zhou, L. Li, and A. Lv, Study on properties of CaO-SiO2-B2O3 system glass-ceramic, Mater. Res. Bull., 42(2007), p. 1137.

R.M. Mahani and S.Y. Marzouk, AC conductivity and dielectric properties of SiO2-Na2O-B2O3-Gd2O3 glasses, J. Alloys Compd., 579(2013), p. 394.

V. Saltas, F. Vallianatos, and E. Gidarakos, Charge transport in diatomaceous earth studied by broadband dielectric spectroscopy, Appl. Clay Sci., 80-81(2013), p. 226.

A. Dutta, T.P. Sinha, P. Jena, and S. Adak, Ac conductivity and dielectric relaxation in ionically conducting soda-lime-silicate glasses, J. Non-Cryst. Solids, 354(2008), No. 33, p. 3952.