International Journal of Minerals, Metallurgy and Materials

Corresponding Author

Kefu Yao*

Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China


amorphous alloys; flux treatment; glass forming ability; supercooled liquid region


Pd81Si19 amorphous alloys were prepared by combination methods of melt spinning and B2O3 flux treatment. A comparison between the ribbons prepared from the fluxed ingots and the non-fluxed ones has been carried out. The result reveals that after fluxing treatment the glass transition temperature of the as-prepared glassy ribbons is reduced while the initial crystallization temperature is enhanced. It results in that the supercooled liquid region (defined as the difference between the initial crystallization temperature and the glass transition temperature) of the glassy alloy treated with fluxing technology has been increased from 31 to 42 K. This shows that fluxing technique can enhance the glass forming ability (GFA) of the binary alloy and improve the thermal stability of supercooled liquid of the glassy alloy.